Automated Prostate Gland Segmentation Based on an Unsupervised Fuzzy C-Means Clustering Technique Using Multispectral T1w and T2w MR Imaging

نویسندگان

  • Leonardo Rundo
  • Carmelo Militello
  • Giorgio Russo
  • Antonio Garufi
  • Salvatore Vitabile
  • Maria Carla Gilardi
  • Giancarlo Mauri
چکیده

Prostate imaging analysis is difficult in diagnosis, therapy, and staging of prostate cancer. In clinical practice, Magnetic Resonance Imaging (MRI) is increasingly used thanks to its morphologic and functional capabilities. However, manual detection and delineation of prostate gland on multispectral MRI data is currently a time-expensive and operator-dependent procedure. Efficient computer-assisted segmentation approaches are not yet able to address these issues, but rather have the potential to do so. In this paper, a novel automatic prostate MR image segmentation method based on the Fuzzy C-Means (FCM) clustering algorithm, which enables multispectral T1-weighted (T1w) and T2-weighted (T2w) MRI anatomical data processing, is proposed. This approach, using an unsupervised Machine Learning technique, helps to segment the prostate gland effectively. A total of 21 patients with suspicion of prostate cancer were enrolled in this study. Volume-based metrics, spatial overlap-based metrics and spatial distance-based metrics were used to quantitatively evaluate the accuracy of the obtained segmentation results with respect to the gold-standard boundaries delineated manually by an expert radiologist. The proposed multispectral segmentation method was compared with the same processing pipeline applied on either T2w or T1w MR images alone. The multispectral approach considerably outperforms the monoparametric ones, achieving an average Dice Similarity Coefficient 90.77 ± 1.75, with respect to 81.90 ± 6.49 and 82.55 ± 4.93 by processing T2w and T1w imaging alone, respectively. Combining T2w and T1w MR image structural information significantly enhances prostate gland segmentation by exploiting the uniform gray appearance of the prostate on T1w MRI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Special Issue on Fuzzy Logic for Image Processing

The increasing availability of huge image collections in different application fields, such as medical diagnosis, remote sensing, transmission and encoding, machine/robot vision, and video processing, microscopic imaging has pressed the need, in the last few last years, for the development of efficient techniques capable of managing and processing large collection of image data. In particular, ...

متن کامل

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

Enhanced unsupervised segmentation of multispectral Magnetic Resonance images

Image segmentation is an established necessity for an improved analysis of Magnetic Resonance images. Neural network-based clustering has been shown in literature to yield good results, yet the possibility of transforming the input feature space in order to enhance the clustering process has gone largely unexplored. In this paper we focus on brain imaging and present a new algorithm for unsuper...

متن کامل

Automatic Segmentation of Brain Tumors on Non-Contrast-Enhanced Magnetic Resonance Images using Fuzzy Clustering

Manual brain tumor segmentation from magnetic resonance imaging is a difficult and time-consuming task for physicians. For this reason, an automated brain tumor segmentation method is desirable. Currently, segmentation of gadolinium-enhanced tumor is feasible via combining semi-supervised clustering with knowledge-based analysis [1]. However, the accuracy of supervised segmentation techniques d...

متن کامل

Supervised and unsupervised methods for prostate cancer segmentation with multispectral MRI.

PURPOSE Magnetic resonance imaging (MRI) has been proposed as a promising alternative to transrectal ultrasound for the detection and localization of prostate cancer and fusing the information from multispectral MR images is currently an active research area. In this study, the goal is to develop automated methods that combine the pharmacokinetic parameters derived from dynamic contrast enhance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Information

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017